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Abstract— Crowd flow forecasting is expected to have a wide 

range of applications such as human resource allocation, 

guidance design, marketing, disaster mitigation and congestion 

prediction for avoiding epidemic such as COVID-19. Crowd 

flow forecasting is challenging because it requires considering 

both the task of capturing the temporal dependency of data and 

capturing the spatial dependence. To address these challenges, 

in this paper, we propose a mechanism for referencing time-

series features that are important for forecasting and 

incorporating graph convolution into Transformer, and we 

introduce CrowdFlowTransformer(CF-Transformer), a deep 

learning model based on Google’s Transformer framework 

captures the Spatio-temporal dependency of time series. CF-

Transformer captures the time series dependency by extracting 

important local time series from the past time series, inputting 

them to the decoder of Transformer, and encoding critical 

features into the model’s input. We adapted CF-Transformer to 

a real-world crowd flow dataset. We evaluated it by comparing 

its forecasting accuracy with conventional models, and the 

results demonstrate that our model outperforms the 

conventional models. 

Index Terms— crowd flow, Transformer, graph convolution, 

time series forecasting, human mobility 

I. INTRODUCTION  

Crowd flow forecasting is the prediction of the subsequent 
flow of people by analyzing various other information such as 
past crowd flow and event information. Accurate crowd flow 
forecasting has a wide range of applications such as human 
resource allocation, guidance design, marketing, disaster 
mitigation and congestion prediction to avoid epidemics such 
as COVID-19. It is one of the issues of urban computing, 
which aims to solve urban problems by computer science[9]. 

When we consider time series forecasting in crowd flow, 
we can divide the task into two parts. 

(1) Task of capturing the temporal dynamics of changing 
crowd flow 

(2) Task of capturing spatial dependence in a complex  traffic 
network 

For capturing temporal dependence of (1), long-term 
forecasting is difficult due to the non-stationarity of the time 
series caused by the presence of events such as the arrival of 

trains and the effects of weather. Fig.1 shows the actual traffic 
flow at two certain points of the airport terminal. The time 
series is non-stationary and the traffic flow changes varies 
from place to place. For capturing spatial dependency of (2), 
it is not easy because it requires modeling traffic conditions at 
various scales[12, 17]. For example, the volume of traffic in a 
certain corridor is affected by the volume of traffic upstream 
and downstream. The magnitude of this influence varies from 
corridor to corridor, and it is difficult to model the 
relationships that influence each other. Simple regression 
models such as ARIMA (Auto-Regressive Integrated Moving 
Average) or VAR (Vector Auto-Regressive) models are 
ineffective for forecasting capturing these complex 
dependencies because these models assume stationarity in the 
time series. 

As a deep learning method, recursive neural networks 
(RNNs) such as Gated Recurrent Unit (GRU) and Long Short 
Term Memory (LSTM) have been used to model the time 
dependency in (1)[15, 18]. Li et al.[9] and Lei et al.[7] 
proposed a method to model temporal dependence using GRU 
and spatial dependence using Graph Convolutional Networks 
(GCNs).In these RNN-based models, the time series are fed 
into the model sequentially, thus capturing the temporal 
sequential dependency. However, it is not possible to directly 
model the periodicity of a time series because different time 
steps in a time series are treated equally[3, 13]. This is a 
drawback since crowd flow has hourly, daily, weekly or 
seasonal periodicity. 

On the other hand, Transformer, an encoder-decoder 
model, was proposed in 2017[14]. Transformer uses the multi-
head attention mechanism and the positional encoding and 
does not require sequential input of series data and processes 

Figure 1: Actual Traffic Flow at Two Points. 



them in parallel. Thus, some research to forecast the time 
series using Transformer was conducted [8] since the 
positional encoding adds the order information of the time 
series to input. In addition, a hybrid model combining GCNs 
and Transformer was also proposed for traffic flow prediction 
[10, 16]. Ling et al. proposed Traffic Transformer [1], which 
uses a single neural layer as GCNs to capture spatial 
dependency, and concatenates two more intercepted time 
series segments, a daily component, and a weekly component, 
along the time axis as the input to model temporal 
dependency. Then, Traffic Transformer connects a local time 
series exactly one day or one week before the time to be 
predicted to the input. However, what is important for 
forecasting is that the crowd flow is similar to that at the time 
to be predicted, and it is not necessarily that there is such a 
similar crowd flow exactly one day or one week before. In 
addition, the input features of the model do not sufficiently 
take into account the features necessary for forecasting crowd 
flow, such as absolute time information and nearby event 
information. 

In order to solve these problems, we incorporate the graph 
convolution into Transformer to capture the spatial 
dependence and take two approaches to capture the temporal 
dependence. There are crucial local time series for prediction 
in the data of approximately one day or one week ago since 
the crowd flow has a cycle of at least one day. Then, as the 
first approach to capture the temporal dependence, we present 
a mechanism to extract these crucial time series and input 
them into the decoder of Transformer. As the second approach 
to capture the temporal dependence, we combine the features 
involved in crowd flow prediction with the input data. We call 
the hybrid structure CF-Transformer (Crowd Flow 
Transformer), and CF-Transformer in an end-to-end model 
that learns spatio-temporal dependencies and captures abrupt 
changes. This approach enables us to take into account not 
only the information of the passage of people, but also any 
other information. We applied CF-Transformer to a real-world 
cloud flow dataset with large variations in traffic volume and 
evaluated it by comparing its forecasting accuracy with 
conventional models. Although the data was originally 
aggregated at the airport, our model can be adapted to other 
environments by changing the input features. 

II. RELATED WORK 

Many deep learning models have been proposed for crowd 
flow forecasting. Many of the models are composed of RNNs, 
which compute time series by recursive processing and store 
the temporal dependence of the time series. RNNs capture 
only the forward dependence of the time series, but Cui et al. 
proposed a bidirectional LSTM model that captures the 
backward dependence[18]. 

However, although these RNN-based models capture the 
temporal dependency, the models do not capture the spatial 
dependency, including geographical information such as 
sensor locations. Zhang et al.[5] proposed a model that takes 
both temporal and spatial proximity into account for 
prediction. Similarly, hybrid models combined CNN or GNN 
with RNN-based models were also proposed to capture both 
temporal and spatial dependence. Wu et al.[17] used 1D 
convolutional neural networks to learn spatial dependency and 
LSTM to learn temporal dependency for traffic flow 
prediction. Li et al.[9] proposed DCRNN, which is an 

encoder-decoder model that combines GCNs with GRU to 
handle the graph structure in the model instead of CNN. 

To solve the problem that GCNs require a predefined 
adjacency matrix, Lei et al.[7] proposed AGCRN. ARCRN 
consists of GCN and GRU and is trained with the graph’s 
adjacency matrix as a parameter. In other words, it is not 
necessary to predefine the adjacency matrix. However, the 
RNN models, which are based on sequential input and 
recursive processing, only capture sequential information of 
the time series and cannot directly model periodicity because 
it equally treats different time series time steps. Another 
drawback is that it is difficult to parallelize the processing, 
which makes learning and prediction inefficient, and long-
term memory difficult[6]. 

On the other hand, Transformer has achieved significant 
success in text generation and natural language processing[2, 
4]. Furthermore, several recent studies have used Transformer 
for time series forecasting due to the high versatility of the 
model. For traffic flow forecasting that captures both temporal 
and spatial dependencies, Xu et al.[10] proposed a model 
combining GCNs and Transformer. The model treats location 
embedding as a learnable parameter. Moreover, Ling et al.[1] 
proposed Traffic Transformer using GCN and Transformer, 
and also proposed a method for encoding the input. However, 
it only embeds temporal information and does not consider 
other significant information (e.g., train schedules, weather, 
presence of nearby events, etc.). 

To summarize, with both spatial and temporal modeling, 
we built CF-Transformer. The model architecture of CF-
Transformer is shown in Fig.4. CF-Transformer can capture 
Spatio-temporal dependencies among time series. We applied 
CF-Transformer to the original crowd flow dataset and 
evaluated it. We describe the environment in which the data 
was obtained in Section 3. 

III. PROBLEM DEFINITION 

We define the crowd flow forecasting problem in this 
study. In Section 3.A, we describe the environment to be 
forecasted. In Section 3.B, we define and formalize the 
forecasting problem. 

A. Environment 

We predict the crowd flow in a part of the international 
airport terminal in Aichi, Japan. Fig.2 shows the environment. 

Figure2: Target environment (airport terminal) 



The space has corridors leading to the airport terminal, train 
station, bus station, taxi station, parking lot and ferry station. 

Thus, a lot of people pass through this space. This 
environment is installed with 21 people counters and is the 
same environment used in the study of person flow estimation 
by Nagata et al[11]. The people counters are VC-3D made by 
Vitracom(R). The counters are installed on the ceiling at the 
position shown in Fig.2 and measure ingress (IN) and egress 
it took to pass through the sensor’s measurement range. In this 
study, we use the information of the passing time and the 
passing direction to forecast crowd flow. In addition, there is 
a train platform adjacent to this environment. Thus, the traffic 
volume fluctuates greatly depending on the arrival and 
departure of trains. Therefore, we use the train timetable for 
forecasting. In another feature of these 3D people counters, 
passengers’ privacy can be secured because images acquired 
by the sensors are not transmitted or stored outside the sensors. 
When sensing in a social environment, it is essential to secure 
the privacy of individuals. (OUT) to space. Moreover, the 
sensor also measures when the person passed through, the 
height of the person, and the time  

B. Forecasting Task 

The aim of crowd flow forecasting is to predict the future 
traffic volume using the past traffic information measured by 
the sensors. We solve a multivariate time series forecasting 
problem with 42 time series = 21 (number of sensors) × 2 (IN-
OUT direction) since each sensors record two transit 
directions (IN-OUT). To model the spatial dependence, we 
represent the complex sensor network as a weighted 
undirected graph � = ��, �� where �  is a set of time series 
for each sensor’s IN-OUT with | � | = N = 42, and � ∈ ℝ�×� 
the adjacency matrix that stores the stores the strength of the 
correlation between the time series. 
� ∈ ℝ�×� denotes the 
feature matrix of the graph observed at time t, where P is the 
number of features. We formalize the forecasting problem as 
a learning of a mapping function from previously observed 
features matrices to future feature matrices on the premise of 
a network �; 


������ = ���; 
�������� � �1� 

where  
���� denotes an array of feature matrices from time 

stamp � to � + �: [
� , 
���, … , 
���].  

IV. METHODOLOGY 

In this section, we present the strategies for capturing 
spatio-temporal dependencies for crowd flow. In Section 4.A, 
we describe an overview of CF-Transformer(Fig.3). Next, in 
section 4.B, we describe the mechanism of time series 
forecasting using Transformer. And next, in Section 4.C, we 
describe the structure of the graph convolution used in CF-
Transformer, and in Section 4.D, we present the extraction 
module outside Transformer. Finally, in Section 4.E, we 
describe the features of the input.  

A. CF-Transformer Architecture 

Transformer is organized in an encoder-decoder manner. 
The encoder encodes the source and captures the features of 
the source. The decoder decodes the target based on the 
encoded information. Then, we applied the structure to 
forecast the time series. The encoder encodes the features of 
the past time series and captures temporal dependency, and the 
decoder decodes the future time series based on the features 
of the past time series. Transformer has attention mechanisms 
that calculate which to focus on in the series. We replaced part 
of the linear transformation in the attention mechanism with 
the graph convolution. This replacement enables us to predict 
with capturing spatial dependency. In addition, CF-
Transformer has an extraction module. The module goes 
through for local time series in the past that are similar to the 
current time series just before the prediction and extracts the 
subsequent time series for the input of the decoder. Finally, 
CF-Transformer has a mechanism to encode important 
features for prediction into the input to the model. This 
mechanism enables us to predict with rich information. 

B. Transformer-based time series forcasting 

Transformer is an encoder-decoder model upon attention 
mechanisms. Unlike RNNs, which are processed sequentially, 
Transformer can access any part of a time series regardless of 
its distance to the target. Thus, Transformer can directly model 
the periodicity of a time series and handle old information 
without collapsing. Therefore, Transformer is also useful in 
time series processing. The encoder consists of a multi-head 
self-attention layer and a position-wise feedforward layer, and 
the decoder has an encoder-decoder attention layer between 
the self-attention layer and the feedforward layer. In addition, 
CF-Transformer has an extraction-decoder attention layer 
with the same structure as the encoder-decoder attention layer. 

The aim of the multi-head attention layers is to attach 
different importance of a time series to each other from 

Figure3: Overview of CF-Transformer 

Figure 4: Multi-head attention with built in graph convolution. 



multiple heads. The outputs of those different heads are then 
concatenated and linearly transformed to aggregate all the 
information. When a time series " = ("1, "2, . . . , "�� is input 
to the multi-head attention, the time series is updated using a 
weighted sum of the values at any time after being passed 
through a linear transformation. The weights are called 
attention scores and are assigned by their similarities. We 
formulate the attention mechanism: 

#� =  $ %�&�"&�'�
�

&(�
�2� 

where #�  is the updated "� , and %�& is the attention score, 

measuring the similarity between "� and "&, calculate as,  

%�& =  exp�-�&�
∑ exp�-�/��/(�

�3� 

Where -�& measures the compatibility of two linearly 

transformed "�  and "& , calculated by using the scaled dot 

product, 
-�& =  �"��1��"&�2�3

√ℎ �4� 

where h is the dimension of the output, �', �1 , �2are 

three linear transformation matrices to strengthen the 
expressiveness of Transformer. 

In the encoder, first, the input features are encoded, and a 
fully connected neural network is employed to strengthen the 
expressiveness of the model. Next, the result is passed through 
the multi-head self-attention to aggregate the traffic impact at 
other time-steps on that at time-step t. The multi-head 
attention in CF-Transformer also aggregates the spatial 
dependency over nearby nodes since CF-Transformer has the 
graph convolution in the multi-head attention. Finally, the 
result is passed through the feedforward layer. After the multi-
head attention layer and the feedforward layer, an add and 
norm layer performs residual skip connection and 
normalization. The residual skip connection solves the 
vanishing gradient problem. As for the decoder, it has a 
similar structure except that Transformer decoder cell has one 
more encoder-decoder attention block, and another dense 
layer is leveraged before outputting the forecasts. The dense 
layer maps the output of the decoder cell to the traffic volume. 
In the decoder’s self-attention mechanism, the decoder trains 
by masking the future values to avoid referencing future 
values. In the inference phase, the value at time-step t is input 
to the decoder, and the predicted value is used as the input at 
time t+1.  

We introduce graph convolution to capture the spatial 
dependence of time series for crowd flow forecasting. The 
graph convolution operation can be well-approximated by 1st 
order Chebyshev polynomial expansion and generalized to 
high-dimensional graph convolution. With the graph 
convolution, the weight pool and bias pool are shared by all 
nodes. Because of this, only features common to all time series 
are learned without learning the features of individual time 
series. For example, it can learn common features such as the 
traffic volume increases during the daytime and decreases at 
night. We replace part of the multi-head attention mechanism 
with graph convolution. This structure allows attention with 

spatial dependency. Fig.4 shows an overview of the multi-
head attention mechanism with built-in graph convolution. 

C. Extraction Module 

There is at least a one-day cycle in the crowd flow data 
since people act on a day unit. Thus, local time series similar 
to the time series to be forecasted exist one day or one week 
in advance, and data in that vicinity are effective for 
forecasting. However, inputting a week’s worth of data into a 
deep learning model significantly increases the computation 
time and requires rich computational resources. Hence, in this 
study, we present the extraction module that goes through 
local time series in the past that are similar to the current time 
series just before the prediction, and extracts the subsequent 
time series. Extraction Module in Fig.3 shows an overview of 
this module. In this module, data for the past several days is 
input in addition to the time series data that is input to the 
encoder. When people intuitively predict time series, they may 
refer to time series that have shown similar fluctuation in the 
past. For example, if the traffic volume increased sharply at a 
particular time yesterday and the day before, they will 
probably predict that it will increase at that time today. 
Inputting the output of the extraction module into the decoder 
enables us to incorporate human intuition into deep learning 
explicitly. 

D. Input Features 

RNNs process the input sequentially, so the order 
relationship of the time series is guaranteed. On the other 
hand, Transformer handles the input time series in parallel, so 
the order relationship of the time series is not guaranteed. 
Then, Transformer adds relative positional information to the 
time series by applying the positional encoding strategy. In 
addition to the relative ordering relationship, absolute time is 
also important for predicting the crowd flow. For example, at 
8:00 a.m., there is a rush to work, and traffic is heavy. Because 
of this, in this study, we combine time delay embedding, 
absolute time, day of the week, and train arrival/departure 
information into the time series, in addition to the positional 
encoding. 

V. EVALUATION 

A. Dataset and Evaluation Metrics 

We used the crowd flow dataset that is aggregated in the 
environment described in Section 3.A. The period of the data 
is weekdays from Jun.1, 2020, to Nov.18, 2020, and the 
portion of the data that was not collected due to unforeseen 
reasons was removed beforehand. The dataset is sorted by 
time in ascending order (from the past to the present) and is 
split into three parts for training (60%), validation (20%), and 
testing(20%). During training, the training data and the 
validation data were shuffled. 

We used four metrics: MAE(Mean Absolute Error), 
RMSE(Root Mean Square Error), RRSE(Root Relative 
Squared Error), CORR(Correlation Coefficient), in order to 
evaluate and compare the performance of different models. 

B. Evaluation Experiment 

We compare proposed CF-Transformer with multiple 
baselines using the dataset and metrics described in Section 
5.A. We used the following baseline models. 



• LSTM: Long Short-Term Memory, which is a typical 
recursive neural network model, and composed of two 
LSTM layers. 

• AGCRN: Adaptive Graph Convolutional Recurrent 
Network, proposed by Lei et al. (2020). This model captures 
node- specific spatial and temporal correlations in time-
series data automatically without a predefined graph. 

• Transformer: proposed by Google Research (2017), which 
re- lies entirely on an attention mechanism to draw global 
dependencies between input and output. 

Table I Parameters of a deep learning model 

Parameters Values 

Input length to Encoder 8, 4, 2 
Output length to Decoder 8, 4, 2 

Multi Head 8 
Epoch 1000 

Node Embedding Dimension 20 
Optimization Adam 
Adam beta1 0.9 
Adam beta2 0.98 

Chebyshev Order 2 
Dropout 0.1 

Coefficient of Penalty Term 0.001 

We input 25 hours of data, which is longer than the cycle 
in a day, and predicted up to 2 hours ahead. Besides, we 
experimented with data from different sampling periods of 15, 
30, and 60 minutes. We used the parameters shown in Table I 

to train the model, and added the L2 regularization of the 
learning parameters as a penalty term to the loss function in 
order to stabilize the learning. 

C. Result 

Table II shows the prediction performance of different 
methods in sampling periods of 15, 30, and 60 minutes. There 
are several discoveries from this result. First, it is clear that the 
prediction performance of CF-Transformer is much better 
than the other models on the crowd flow dataset in terms of all 
the evaluation metrics. This improvement shows that our 
presented architecture is effective in forecasting crowd flow, 
capturing both complex temporal and spatial dependencies. In 
addition, the RNN-based models of LSTM and AGCRN have 
larger prediction errors. This is because RNN-based models 
process sequentially and cannot directly model the periodicity 
of a time series. Furthermore, the performance of Transformer 
is better than that of such RNN models. This result shows that 
the encoder-decoder structure that treats time series equally by 
attention mechanism is effective for time series forecasting. 
Fig. 5 shows the example of prediction results of each method 
on the test data. The horizontal axis of the figure is the time, 
and the vertical axis is the number of people passing through. 
Overall, it can be seen that our model fits better and predicts 
more accurately. Under this sensor, it is difficult to predict the 
traffic volume because the volume varies greatly. Even in such 
a situation, our model is able to predict the traffic volume 
accurately. In particular, the difference is obvious at the large  

Figure 5: Example of prediction result. 

Table II Evaluate Comparison 

T Metric LSTM AGCRN Transformer CF-Transformer

 MAE 6.21 5.86 4.85 4.41 

15min 
RMSE  

RRSE 

17.35 
0.90 

16.82 
0.94 

13.68 
0.62 

12.10 

0.53 

 CORR 0.48 0.52 0.57 0.58 

 MAE 8.44 9.40 7.91 7.32 

30min 
RMSE  

RRSE 

23.50 
0.61 

25.56 
0.67 

21.66 
0.52 

18.62 

0.44 

 CORR 0.62 0.56 0.64 0.65 

 MAE 15.16 16.73 13.01 11.78 

60min 
RMSE  

RRSE 

40.31 
0.56 

50.59 
0.72 

33.52 
0.42 

28.89 

0.35 

 CORR 0.69 0.63 0.72 0.72 



rise near 08:00 in the OUT direction, and only the proposed 
model predicts a large increase in traffic. 

Table 3 shows the prediction performance of each of the 
proposed mechanisms in sampling periods of 15 minutes. 
Graph Convolution, Extraction Module, and Encoding Input 
in Table 3 are models that combine the mechanisms described 
in Sections 4.3, 4.4, and 4.5 with the Transformer. The results 
from Transformer and CF-Transformer  are also included for 
comparison. The results show that the extraction module 
contributes significantly to the prediction. There was an 

approximate improvement of -5.8％ in MAE, -4.3％ in RMSE, 

-6.5％ in RRSE, and +1.75％ in CORR. However, on the 

other hand, there is no improvement in prediction 
performance by the graph convolution. To sum up, although 
the overall prediction error will be a little larger, it is important 
to use the graph convolution to capture spatial dependence in 
order to make abrupt changes in the traffic volume. 

VI. CONCLUSION 

In this paper, we presented CF-Transformer that captures 
both temporal and spatial dependencies. Specifically, we 
incorporate the graph convolution into the multi-head 
attention of Transformer to capture spatial dependency. In 
addition, we further presented an extraction module that 
extracts important local time series from past time series, and 
encodes the features necessary for time series forecasting of 
crowd flow into the input to capture the time dependency. 
When evaluated on the real-world crowd flow dataset, our 
approach obtained significantly better prediction than 
baselines. For future work, we will model spatial 
dependencies that change over time. 
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Table III Comparison of Each Presented Mechanism 

Metric Transformer Graph Convolution Extraction Module Encoding Input CF-Transformer 

MAE 4.85 4.86 4.85 4.57 4.41 

RMSE  
RRSE 

13.68 
0.62 

13.78 
0.63 

13.78 
0.64 

13.61 

0.58 

12.10 

0.53 

CORR 0.57 0.56 0.57 0.58 0.58 


